Ref No:

# SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90



### COURSE PLAN

Academic Year -2018-19

| Program:             | B E – Civil Engineering |  |  |  |
|----------------------|-------------------------|--|--|--|
| Semester :           | 8                       |  |  |  |
| Course Code:         | 15CV833                 |  |  |  |
| Course Title:        | Pavement Design         |  |  |  |
| Credit / L-T-P:      | 4 / 4-0-0               |  |  |  |
| Total Contact Hours: | 40                      |  |  |  |
| Course Plan Author:  | Shivaprasad D G         |  |  |  |

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23821488/23821315 www.Skit.org, Email: skitprinci1@gmail.com

# Table of Contents

| A. COURSE INFORMATION                             | 4  |
|---------------------------------------------------|----|
| 1. Course Overview                                | 4  |
| 2. Course Content                                 | 4  |
| 3. Course Material                                |    |
| 4. Course Prerequisites                           | 6  |
| 5. Content for Placement, Profession, HE and GATE | 6  |
| B. OBE PARAMETERS                                 | 6  |
| 1. Course Outcomes                                | 6  |
| 2. Course Applications                            | 7  |
| 3. Mapping And Justification                      | 7  |
| 4. Articulation Matrix                            | 8  |
| 5. Curricular Gap and Content                     | 8  |
| 6. Content Beyond Syllabus                        |    |
| C. COURSE ASSESSMENT                              | 9  |
| 1. Course Coverage                                |    |
| 2. Continuous Internal Assessment (CIA)           |    |
| D1. TEACHING PLAN - 1                             |    |
| Module - 1                                        |    |
| Module – 2                                        |    |
| E1. CIA EXAM – 1                                  | 12 |
| a. Model Question Paper - 1                       |    |
| b. Assignment -1                                  |    |
| D2. TEACHING PLAN - 2                             | 16 |
| Module – 3                                        |    |
| Module – 4                                        |    |
| E2. CIA EXAM – 2                                  |    |
| a. Model Question Paper - 2                       |    |
| b. Assignment – 2                                 |    |
| D3. TEACHING PLAN - 3                             | 22 |
| Module – 5                                        |    |
| E3. CIA EXAM – 3                                  | 24 |
| a. Model Question Paper - 3                       |    |
| b. Assignment – 3                                 |    |
| F. EXAM PREPARATION                               | 26 |
| 1. University Model Question Paper                | 26 |
| 2. SEE Important Questions                        |    |
| G. Content to Course Outcomes                     | 29 |
| 1. TLPA Parameters                                | 29 |
| 2. Concepts and Outcomes:                         |    |

## A. COURSE INFORMATION

### 1. Course Overview

| Degree:              | Engineering                               | Program:       | civil       |
|----------------------|-------------------------------------------|----------------|-------------|
| Semester:            | 4 <sup>th</sup> year, 8 <sup>th</sup> sem | Academic Year: | 18-19       |
| Course Title:        | Pavement design                           | Course Code:   | 15CV833     |
| Credit / L-T-P:      | 3/4-0-0                                   | SEE Duration:  | 180 Minutes |
| Total Contact Hours: | 40                                        | SEE Marks:     | 80 Marks    |
| CIA Marks:           | 30                                        | Assignment     | 1 / Module  |
| Course Plan Author:  | Dhanalakshmi M                            | Sign           | Dt:         |
| Checked By:          |                                           | Sign           | Dt:         |
| CO Targets           | CIA Target : %                            | SEE Target:    | %           |

#### 2. Course Content

| Mod | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Teachi | Identified                                                              | Blooms           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|------------------|
| ule |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng     | Module                                                                  | Learning         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hours  | Concepts                                                                | Levels           |
| 1   | Introduction: Desirable characteristics of pavement, Types<br>and components, Difference between Highway pavement<br>and Air field pavement, Design strategies of variables,<br>Functions of sub grade, sub base, Base course, surface<br>course, comparison between Rigid and flexible pavement<br>Fundamentals of Design of Pavements: Stresses and<br>deflections, Principle, Assumptions and Limitations of<br>Boussinesq's theory, Burmister theory and problems on<br>above                                                                                   | 8      | Fundamentals of<br>pavement<br>design                                   | L2<br>understand |
| 2   | Design Factors: Design wheel load, contact pressure, Design<br>life, Traffic factors, climatic factors, Road geometry, Subgrade<br>strength and drainage, ESWL concept Determination of<br>ESWL by equivalent deflection criteria, Stress criteria, EWL<br>concept, and problems on above.<br>Flexible pavement Design: Assumptions, McLeod Method,<br>Kansas method, CBR method, IRC Method (old), CSA method<br>using IRC-37-2001, problems on above                                                                                                              | 8      | Design Factors<br>and methods of<br>flexible<br>pavements               | L6<br>design     |
| 3   | Flexible Pavement Failures, Maintenance and Evaluation,<br>Types of failures, Causes, Remedial/Maintenance measures<br>in flexible pavements, Functional Evaluation by Visual<br>inspection and unevenness measurements, Structural<br>evaluation by Benkleman beam deflection method, Falling<br>weight deflectometer, GPR method. Design factors for<br>runway pavements, Design methods for Airfield pavement<br>and problems on above                                                                                                                           | 8      | Failures,<br>Maintenance<br>and Evaluation of<br>flexible<br>pavements  | L5<br>evaluate   |
| 4   | Stresses in Rigid Pavement : Types of stress, Analysis of<br>Stresses, Westergaard's Analysis, Modified Westergaard<br>equations, Critical stresses, Wheel load stresses, Warping<br>stress, Frictional stress, combined stresses (using chart /<br>equations), problems on above<br>Design of Rigid Pavement: Design of CC pavement by IRC:<br>58-2002 for dual and Tandem axle load, Reinforcement in<br>slabs, Design of Dowel bars, Design of Tie bars, Design<br>factors for Runway pavements, Design methods for airfield<br>pavements, problems of the above | 8      | Stresses and<br>Design of Rigid<br>Pavement                             | L6<br>design     |
| 5   | Rigid Pavement Failures, Maintenance and Evaluation: Types<br>of failures, causes, remedial/maintenance measures in rigid<br>pavements, Functional evaluation by Visual inspection and<br>unevenness measurements, wheel load and its repetition,                                                                                                                                                                                                                                                                                                                   | 8      | -Maintenance of<br>rigid pavements<br>-Evaluation of<br>rigid pavements | L5<br>evaluate   |

|   | properties of subgrade, properties of concrete. External conditions, joints, Reinforcement, Requirements of joints, |    | and joints |   |
|---|---------------------------------------------------------------------------------------------------------------------|----|------------|---|
|   | Types of joints, Expansion joint, contraction joint, warping                                                        |    |            |   |
|   | joint, construction joint, longitudinal joint, Design of joints                                                     |    |            |   |
| - | Total                                                                                                               | 40 | -          | - |

#### 3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

| es in book   A Text books (Title, Authors, Edition, Publisher, Year.) -   1, 2, 3, 1. S K Khanna, C E G Justo, and A Veeraragavan, "Highway Engineering", 2,3,6,7,8, 4,5 In L   4, 5 Nem Chand & Brothers 9   1,3,5 2. L.R.Kadiyali and Dr.N.B.Lal, " Principles and Practices of Highway 5,6,9 In L   Engineering", Khanna publishers 1.2,3,3, Yang, H., Huang, "Pavement, Analysis, and Design", University of 1, 2, 4, 6, In d | -<br>Lib<br>Lib |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| A Text books (Title, Authors, Edition, Publisher, Year.) - -   1, 2, 3, 1. S K Khanna, C E G Justo, and A Veeraragavan, "Highway Engineering", 2,3,6,7,8, 4,5 In L   4, 5 Nem Chand & Brothers 9   1,3,5 2. L.R.Kadiyali and Dr.N.B.Lal, " Principles and Practices of Highway 5,6,9 In L   Engineering", Khanna publishers - -   1, 2, 3, 3, Yang H, Huang , "Pavement Analysis and Design", University of 1, 2, 4, 6, In d -    | -<br>Lib<br>Lib |
| 1, 2, 3, 1. S K Khanna, C E G Justo, and A Veeraragavan, "Highway Engineering", 2,3,6,7,8, 4,5 In I   4, 5 Nem Chand & Brothers 9   1,3,5 2. L.R.Kadiyali and Dr.N.B.Lal, " Principles and Practices of Highway 5,6,9 In I   Engineering", Khanna publishers 1.2,3,3, Yang H, Huang , "Pavement Analysis and Design", University of 1.2,4,6, In d                                                                                 | Lib<br>         |
| 4, 5 Nem Chand & Brothers 9   1,3,5 2. L.R.Kadiyali and Dr.N.B.Lal, " Principles and Practices of Highway 5,6,9 In l   Engineering", Khanna publishers 1.2.3, 3. Yang H, Huang , "Pavement Analysis and Design", University of 1.2.4, 6. In d                                                                                                                                                                                     | Lib             |
| 1,3,5 2. L.R.Kadiyali and Dr.N.B.Lal, " Principles and Practices of Highway 5,6,9 In I   Engineering", Khanna publishers 1, 2, 3, 3, Yang H, Huang , "Pavement Analysis and Design", University of 1, 2, 4, 6, In d                                                                                                                                                                                                               | Lib             |
| Engineering", Khanna publishers<br>1, 2, 3, 3, Yang H, Huang , "Pavement Analysis and Design", University of 1, 2, 4, 6, Ind                                                                                                                                                                                                                                                                                                      |                 |
| 1.2.3. 3. Yang H. Huang . "Pavement Analysis and Design". University of 1.2.4.6. In d                                                                                                                                                                                                                                                                                                                                             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | lept            |
| 4, 5 Kentucky 8,9                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| B Reference books (Title, Authors, Edition, Publisher, Year.) -                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 1,3,5 1. Yoder & wit zorac , "Principles of pavement design", John Wiley & Sons. 1,3,4 In l                                                                                                                                                                                                                                                                                                                                       | Lib             |
| 2,4 2. Subha Rao, "Principles of Pavement Design". 4, 5 In l                                                                                                                                                                                                                                                                                                                                                                      | Lib             |
| 2,3, 4, 3. R Srinivasa Kumar, "Pavement Design" , University Press. 3,4,5,7,8 In d                                                                                                                                                                                                                                                                                                                                                | lept            |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                 | -               |
| 4. Relevant recent IRC codes                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| C Concept Videos or Simulation for Understanding                                                                                                                                                                                                                                                                                                                                                                                  | -               |
| C1 https://www.youtube.com/watch?v=3oNagZg4Hiw                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| C2 https://www.youtube.com/watch?                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| v=uJntLOgEHD4&list=PLSitSeMkk1bndRgMKgGvtl64palLKUVuH&index=                                                                                                                                                                                                                                                                                                                                                                      |                 |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| C3 https://www.youtube.com/watch?v=1iNbOLjhhho                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| C4 https://www.youtube.com/watch?v=YXMtSAn71oU                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| C5 https://www.youtube.com/watch?v=j5acA-UFPrs                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| D Software Tools for Design                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   | -               |
| E Recent Developments for Research                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 1 Recent trends in pavements- https://ascelibrary.org/doi/document                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| F Others (Web, Video, Simulation, Notes etc.)                                                                                                                                                                                                                                                                                                                                                                                     |                 |

#### 4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

| Mod  | Course  | Course Name                         | Topic / Description           |            |     | Remarks                                                                 | Blooms |
|------|---------|-------------------------------------|-------------------------------|------------|-----|-------------------------------------------------------------------------|--------|
| ules | Code    |                                     |                               |            |     |                                                                         | Level  |
| 1    | 15CIV14 | Elements of<br>civil<br>engineering | Basic concepts<br>materials   | of pavemen | t 1 | Knowledge of basic<br>terminologies of<br>pavement materials            | L2     |
|      |         |                                     |                               |            |     | is required                                                             |        |
| 2    | 15CV63  | Highway<br>engineering              | Basic concepts<br>engineering | of highwa  | y 6 | Knowledge of basic<br>design terminologies<br>of highway is<br>required | L2     |

Students must have learnt the following Courses / Topics with described Content ....

### 5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

| Mod  | Topic / Description | Area | Remarks | Blooms |
|------|---------------------|------|---------|--------|
| ules |                     |      |         | Level  |
|      |                     |      |         |        |

### B. OBE PARAMETERS

#### 1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

| Mod  | Course  | Course Outcome                     | Teach. Hours | Instr Method | Assessme  | Blooms' |
|------|---------|------------------------------------|--------------|--------------|-----------|---------|
| ules | Code.#  | At the end of the course, student  |              |              | nt        | Level   |
|      |         | should be able to                  |              |              | Method    |         |
| 1    | 15CV833 | Understand the characters and      | 8            | Lecture/demo | CIE/Assig | L3      |
|      |         | analyze design components of       |              | nstrate      | nment/u   |         |
|      |         | different types of pavements       |              |              | nit test  |         |
| 2    | 15CV833 | Design the flexible pavements      | 8            | Lecture      | CIE/Assig | L4      |
|      |         | based on soil condition using      |              |              | nment/u   |         |
|      |         | different methods                  |              |              | nit test  |         |
| 3    | 15CV833 | Evaluate the equade for failure of |              |              |           | 15      |
|      | 1901099 | Evaluate the causes for failure of | <b>U</b>     | Lootaro      | nment/u   | =5      |
|      |         | methods                            |              |              | nit test  |         |
|      |         | linethous                          |              |              |           |         |
| 4    | 15CV833 | Design the rigid pavements based   | 8            | Lecture      | CIE/Assig | L4      |
|      |         | on soil condition using different  |              |              | nment/u   |         |
|      |         | method                             |              |              | nit test  |         |
| 5    | 15CV833 | Evaluate the causes for failure of | 8            | Lecture      | CIE/Assig | L5      |
|      | 2 00    | rigid pavements using different    |              |              | nment/u   | 0       |
|      |         | methods                            |              |              | nit test  |         |
| -    | -       | Total                              | 40           | -            | -         | L3-L5   |

#### 2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

| Mod  | Application Area                                              | CO   | Level |
|------|---------------------------------------------------------------|------|-------|
| ules | Compiled from Module Applications.                            |      |       |
| 1    | Construction of different types of pavements                  | CO1  | L2    |
| 1    | Analyzing the different types of pavements                    | CO2  | L4    |
| 2    | Analyzing the application of wheel loads on bitumen pavements | CO3  | L4    |
| 2    | Designing of bitumen pavements                                | CO4  | L5    |
| 3    | Maintenance of bitumen pavements                              | CO5  | L4    |
| 3    | Evaluation of bitumen pavements                               | CO6  | L5    |
| 4    | Analyzing the application of stresses on concrete pavements   | CO7  | L4    |
| 4    | Designing of concrete pavements                               | CO8  | L5    |
| 5    | Maintenance of concrete pavements                             | CO9  | L4    |
| 5    | Evaluation of concrete pavements                              | CO10 | L5    |

#### 3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

| -    | -       | Course Outcomes                                                                                                                                                                                                                                                                                                                              |    |     |    |    | Ρ   | roq | ram | n Ot | utco | ome | es  |    |    |    |    | -   |
|------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|----|-----|-----|-----|------|------|-----|-----|----|----|----|----|-----|
| Mod  | CO.#    | At the end of the course                                                                                                                                                                                                                                                                                                                     | PO | PO  | PO | PO | PO  | PO  | PO  | PO   | PO   | PO  | PO  | PO | PS | PS | PS | Lev |
| ules |         | student should be able to                                                                                                                                                                                                                                                                                                                    | 1  | 2   | 3  | 4  | 5   | 6   | 7   | 8    | 9    | 10  | 11  | 12 | O1 | 02 | 03 | el  |
| 1    | CO1     | Understand the characters and<br>analyze design components of<br>different types of pavements                                                                                                                                                                                                                                                | 3  | 2   | 1  | 1  | -   | -   | -   | -    | -    | 2   | -   | 2  | Х  | Х  | Х  | L2  |
| 1    | CO2     | Design the flexible pavements<br>based on soil condition using<br>different methods                                                                                                                                                                                                                                                          | 3  | 3   | 3  |    | 1   | -   | 1   | -    | -    | -   | -   | 2  | X  | X  | Х  | L5  |
| 2    | CO3     | Evaluate the causes for failure of<br>flexible pavements using<br>different methods                                                                                                                                                                                                                                                          | 3  | 3   | 2  | 2  | -   | -   | -   | -    | -    | -   | 1   | 2  | Х  | Х  | Х  | L4  |
| 2    | CO4     | Design the rigid pavements<br>based on soil condition using<br>different method                                                                                                                                                                                                                                                              | 3  | 3   | 3  |    | 1   | -   | 1   | -    | -    | -   | -   | 2  | Х  | Х  | Х  | L5  |
| 3    | CO5     | Evaluate the causes for failure of<br>rigid pavements using different<br>methods                                                                                                                                                                                                                                                             | 3  | 3   | 1  | 2  | -   | -   | -   | -    | -    | -   | 1   | 2  | Х  | Х  | Х  | L4  |
| -    | 15cv833 | Average attainment (1, 2, or 3)                                                                                                                                                                                                                                                                                                              | 3  | 2.8 | 2  | 1  | 0.4 | -   | 0.4 | -    | -    | 0.4 | 0.4 | 2  |    |    |    | -   |
| -    | PO, PSO | 1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions;<br>4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and<br>Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork;<br>10.Communication; 11.Project Management and Finance; 12.Life-long Learning: |    |     |    |    |     |     |     |      |      |     |     |    |    |    |    |     |

#### 4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

| Mod  | Gap Topic | Actions Planned | Schedule Planned | Resources Person | PO Mapping |
|------|-----------|-----------------|------------------|------------------|------------|
| ules |           |                 |                  |                  |            |
|      |           |                 |                  |                  |            |
|      |           |                 |                  |                  |            |

### C. COURSE ASSESSMENT

#### 1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

|      |                             |        | -                       |       |       |     |       |     |     |        |
|------|-----------------------------|--------|-------------------------|-------|-------|-----|-------|-----|-----|--------|
| Mod  | Title                       | Teach. | No. of question in Exam |       |       |     |       |     | CO  | Levels |
| ules |                             | Hours  | CIA-1                   | CIA-2 | CIA-3 | Asg | Extra | SEE |     |        |
|      |                             |        |                         |       |       |     | Asg   |     |     |        |
| 1    | Introduction                | 8      | 2                       | -     | -     | 1   | 1     | 2   | CO1 | L2,L4  |
| 2    | Design factors              | 8      | 2                       | -     | -     | 1   | 1     | 2   | CO2 | L4,L6  |
| 3    | Flexible pavement failures  | 8      | -                       | 2     | -     | 1   | 1     | 2   | CO3 | L4,L5  |
| 4    | Stresses in rigid pavements | 8      | -                       | 2     |       | 1   | 1     | 2   | CO4 | L4     |
| 5    | Rigid pavement failures     | 8      | -                       | -     | 4     | 1   | 1     | 2   | CO5 | L4,L5  |
| -    | Total                       | 40     | 4                       | 4     | 4     | 5   | 5     | 10  | -   | -      |

#### 2. Continuous Internal Assessment (CIA)

#### Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

| Mod  | Evaluation     | Weightage in | CO      | Levels   |
|------|----------------|--------------|---------|----------|
| ules |                | Marks        |         |          |
| 1, 2 | CIA Exam – 1   | 30           | CO1,CO2 | L2,L4,L4 |
| 3, 4 | CIA Exam – 2   | 30           | CO2,CO3 | L4,L5,L4 |
| 5    | CIA Exam – 3   | 30           | CO4,CO5 | L4,L5    |
|      |                |              |         |          |
| 1, 2 | Assignment - 1 | 05           |         | L2,L4,L4 |
| 3, 4 | Assignment - 2 | 05           |         | L4,L5,L4 |

| 5     | Assignment - 3                  | 05 |   | L4 |
|-------|---------------------------------|----|---|----|
|       |                                 |    |   |    |
| 1, 2  | Seminar - 1                     |    | - | -  |
| 3, 4  | Seminar - 2                     |    | - | -  |
| 5     | Seminar - 3                     |    | - | -  |
|       |                                 |    |   |    |
| 1, 2  | Quiz - 1                        |    | - | -  |
| 3, 4  | Quiz - 2                        |    | - | -  |
| 5     | Quiz - 3                        |    | - | -  |
|       |                                 |    |   |    |
| 1 - 5 | Other Activities – Mini Project | -  |   |    |
|       | Final CIA Marks                 | 20 | - | _  |

## D1. TEACHING PLAN - 1

Module - 1

| Title:   | PAVEMENT DESIGN INTRODUCTION                                                                                  | Appr<br>Time: | 8Hrs   |
|----------|---------------------------------------------------------------------------------------------------------------|---------------|--------|
| a        | Course Outcomes                                                                                               | -             | Blooms |
| -        | The student should be able to:                                                                                | -             | Level  |
| 1        | Understand the characters and analyze design components of different                                          | CO1           | L3     |
|          | types of pavements                                                                                            |               |        |
| b        | Course Schedule                                                                                               | -             | -      |
| Class No | Module Content Covered                                                                                        | CO            | Level  |
| 1        | Introduction: Desirable characteristics of pavement, Types and components                                     | CO1           | L2     |
| 2        | Difference between Highway pavement and Air field pavement,                                                   | CO1           | L2     |
| 3        | Design strategies of variables                                                                                | CO1           | L2     |
| 4        | Functions of sub grade, sub base, Base course, surface course, comparison between Rigid and flexible pavement | CO1           | L2     |
| 5        | Fundamentals of Design of Pavements: Stresses and deflections,                                                | CO1           | L2     |
| 6        | Principle, Assumptions and Limitations of Boussinesq's theory, Burmister theory                               | CO2           | L4     |
| 7        | problems on above                                                                                             |               | L3     |
| 8        | problems on above                                                                                             |               | L3     |
| С        | Application Areas                                                                                             | СО            | Level  |
| 1        | In the construction of pavements                                                                              |               |        |
| d        | Review Questions                                                                                              |               |        |
|          |                                                                                                               |               |        |
| е        | Experiences                                                                                                   | -             | -      |
| 1        |                                                                                                               |               |        |

### Module – 2

| Title:   | DESIGN FACTORS                                                                | Appr  | 8 Hrs  |
|----------|-------------------------------------------------------------------------------|-------|--------|
|          |                                                                               | Time: |        |
| a        | Course Outcomes                                                               | -     | Blooms |
| -        | The student should be able to:                                                | -     | Level  |
| 1.       | Design the flexible pavements based on soil condition using different methods | CO2   | L4     |
| b        | Course Schedule                                                               | -     | -      |
| Class No |                                                                               | CO    | Level  |
| 9        | Design Factors: Design wheel load, contact pressure,                          | CO2   | L4     |

| 10 | Design life, Traffic factors, climatic factors, Road geometry, Subgrade | CO2      | L4    |
|----|-------------------------------------------------------------------------|----------|-------|
|    | Stielight and utaliage,                                                 | <u> </u> |       |
| 11 | ESWL concept Determination of ESWL by equivalent deflection criteria,   | CO2      | L4    |
|    | Stress criteria, EWL concept, and problems on above.                    |          |       |
| 12 | Flexible pavement Design: Assumptions, Mcleod Method,                   | CO2      | L4    |
| 13 | Kansas method, CBR method,                                              | CO2      | L4    |
| 14 | IRC Method (old),                                                       | CO2      | L4    |
| 15 | CSA method using IRC-37-2001, problems on above                         | CO2      | L4    |
| 16 | CSA method using IRC-37-2001, problems on above                         | CO2      | L4    |
| С  | Application Areas                                                       | СО       | Level |
| 1  | In the construction of flexible pavements                               |          |       |
| d  | Review Questions                                                        | -        | -     |
|    |                                                                         |          |       |
| е  | Experiences                                                             |          | -     |
| 1  |                                                                         |          |       |

## E1. CIA EXAM – 1

### a. Model Question Paper - 1

|     | Sem: 8th Marks 30                                                |          |          |          | 30 | Time: | 75 mi | nutes |
|-----|------------------------------------------------------------------|----------|----------|----------|----|-------|-------|-------|
|     | Pavement design                                                  |          |          | ŀ        |    |       |       |       |
| Q.  | Note: Answer all questions, each carry equal marks. N            | Iodule   | e: 1, 2  |          |    | Marks | СО    | Level |
| No  | 3                                                                |          | -        |          |    |       |       |       |
|     | MODULE-1(15 marks)                                               |          |          |          |    |       |       |       |
| 1 ä | Write a brief note on rigid pavement                             |          |          |          |    | 6     | CO1   | L2    |
| k   | Write the difference between flexible pavement and rig           | gid pav  | rement   | t        |    | 9     | CO1   | L2    |
|     | OR                                                               |          |          |          |    |       |       |       |
| 2 8 | With a neat sketch explain the properties and function           | of       |          |          |    | 5     | CO2   | L2    |
|     | a) sub base course b) wearing course                             |          |          |          |    |       |       |       |
| k   | A plate load test conducted with 0.3m dia plate on sub           | grade    | and or   | าล       |    | 10    | CO2   | L5    |
|     | pavement of thickness 0.4m sustained pressure of 0.10            | N/mm     | 1² and   |          |    |       |       |       |
|     | 0.40N/mm <sup>2</sup> respectively at 5mm deflection. Design the | e paver  | nent s   | ection f | or |       |       |       |
|     | 50KN wheel load and contact pressure of 0.70N/mm <sup>2</sup> 1  | for an a | allowal  | ole      |    |       |       |       |
|     | deflection of 8mm using Burmister two layer theory.              |          |          |          |    |       |       |       |
|     |                                                                  |          |          |          |    |       |       |       |
|     | MODULE-2(15 marks)                                               |          |          |          |    |       |       |       |
| 3 6 | List and explain the design strategies of variables of pa        | vemer    | nt       |          |    | 5     | CO3   | L2    |
| k   | Determine the total thickness of flexible pavement ass           | uming    | single   | layer    |    | 5     | CO3   | L5    |
|     | elastic theory :                                                 |          |          |          |    |       |       |       |
|     | Design wheel load= 3700kg                                        |          |          |          |    |       |       |       |
|     | Tyre pressure= 5.0kg/cm <sup>2</sup>                             |          |          |          |    |       |       |       |
|     | Elastic modulus= 150kg/cm²                                       |          |          |          |    |       |       |       |
|     | Permissible deflection= 0.25cm                                   |          |          |          |    |       |       |       |
| (   | Write a brief note on assumptions and limitation of bou          | sssine   | sq's th  | eory     |    | 5     | CO3   | L2    |
|     | OR                                                               |          |          |          |    |       |       |       |
| 4 a | With a neat sketch describe the significance of design           | wheel    | load a   | nd       |    | 6     | CO4   | L3    |
|     | contact pressure in design of pavement                           |          |          |          |    |       |       |       |
| k   | A circular load of radius 15cm with uniform contact pres         | ssure c  | of 7kg/  | ′cm² is  |    | 9     | CO4   | L5    |
|     | applied on the surface of the homogeneous mass. Det              | ermine   | e the ve | ertical  |    |       |       |       |
|     | stress at a radial distance of 30cm at a depth of 45cm f         | rom th   | e surfa  | ace.     |    |       |       |       |

#### b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions

| Crs C | s Code: 15CV833 Sem: 8th Marks: 30 Time: 9                                        |     | 90 – 120 minutes                    |                          |                           |                      |                 |       |          |       |
|-------|-----------------------------------------------------------------------------------|-----|-------------------------------------|--------------------------|---------------------------|----------------------|-----------------|-------|----------|-------|
| Cours | Course: Pavement design                                                           |     |                                     |                          |                           |                      |                 |       |          |       |
| Note: | lote: Each student to answer 2-3 assignments. Each assignment carries equal mark. |     |                                     |                          |                           |                      |                 |       |          |       |
| SNo   | l                                                                                 | JSN |                                     | As                       | signment Des              | cription             |                 | Marks | СО       | Level |
| 1     |                                                                                   |     | Explain two                         | layered theo             | ry. Mentions its          | assumptions          | and limitations | 5     | CO1      | L3    |
| 2     |                                                                                   |     | Explain desi                        | ign wheel loa            | d.                        |                      |                 | 5     | CO1      | L2    |
| 3     |                                                                                   |     | Explain the                         | concept of de            | etermining the ed         | uivalent wh          | eel load        | 5     | CO1      | L2    |
| 4     |                                                                                   |     | Explain con                         | tact pressure            |                           |                      |                 | 5     | CO1      | L2    |
| 5     |                                                                                   |     | Difference                          | between ai               | rfield paveme             | nt and rigid         | l pavement      | 5     | CO2      | L3    |
| 6     |                                                                                   |     | Write a bri                         | ef note on r             | igid pavement             |                      |                 | 5     | CO2      | L3    |
| 7     |                                                                                   |     | Write the c                         | difference b             | etween flexibl            | e pavemer            | nt and rigid    | 5     | CO2      | L3    |
|       |                                                                                   |     | pavement                            |                          |                           |                      |                 |       |          |       |
|       |                                                                                   |     | Define ESW                          | /L                       |                           |                      |                 | 5     | CO2      | L2    |
| 9     |                                                                                   |     | With a nea                          | it sketch exp            | olain the prope           | erties and f         | unction of      | 5     | CO2      | L2    |
|       |                                                                                   |     | a) sub base                         | e course                 | b) wearing                | g course             |                 |       |          |       |
| 10    |                                                                                   |     | A plate loa                         | d test cond              | ucted with 0.3            | m dia plate          | on subgrade     | 5     | CO2      | L5    |
|       |                                                                                   |     | and on a p                          | avement of               | thickness 0.4r            | n sustained          | d pressure of   |       |          |       |
|       |                                                                                   |     | 0.10N/mm                            | 1 <sup>2</sup> and 0.40N | 1/mm <sup>2</sup> respect | ively at 5m          | im deflection.  |       |          |       |
|       |                                                                                   |     | Design the                          | e pavement               | section for 50            | KN wheel l           | oad and         |       |          |       |
|       |                                                                                   |     | contact pre                         | essure of 0.             | /ON/mm <sup>-</sup> for a | an allowadi          | e deflection of |       |          |       |
|       |                                                                                   |     | 8mm using                           | j Burmister              | two tayer the             | ory.<br>Jérophologia |                 |       | <u> </u> |       |
| 11    |                                                                                   |     | with a nea                          | il skelch de             | scribe the sigr           | inicance of          | design wheel    | 5     | 02       | L2    |
| 12    |                                                                                   |     |                                     | ontact pres              | sure in design            | of paverne           | taat prossure a | f r   | <u> </u> |       |
| 12    |                                                                                   |     | $\frac{1}{2}$ kg/cm <sup>2</sup> is | annlind on               | the surface of            | the home             | donoous mass    | " 5   |          | L-5   |
|       |                                                                                   |     | Determine                           | the vertica              | l stross at a rac         | lial distanc         | of 20cm at a    |       |          |       |
|       |                                                                                   |     | depth of 4                          | 5cm from th              | ne surface                |                      |                 |       |          |       |
| 13    |                                                                                   |     | List and ex                         | plain the de             | esian strategie           | s of variabl         | es of pavemer   | nt 5  | CO1      | 12    |
| 1/    |                                                                                   |     | Determine                           | the total th             | ickness of flex           | ible paver           | ent assuming    | 5     | CO1      | 15    |
|       |                                                                                   |     | single lave                         | r elastic the            | eorv :                    |                      | ione accuming   |       | 001      |       |
|       |                                                                                   |     | Desian wh                           | eel load= 37             | 700ka                     |                      |                 |       |          |       |
|       |                                                                                   |     | Tyre press                          | ure= 5.0kg/              | cm <sup>2</sup>           |                      |                 |       |          |       |
|       |                                                                                   |     | Elastic mo                          | dulus= 150k              | g/cm²                     |                      |                 |       |          |       |
|       |                                                                                   |     | Permissible                         | e deflectior             | -<br>1= 0.25cm            |                      |                 |       |          |       |
| 15    |                                                                                   |     | Write a bri                         | ef note on a             | ssumptions a              | nd limitatio         | n of            | 5     | CO2      | L2    |
|       |                                                                                   |     | bousssines                          | sq's theory              | •                         |                      |                 |       |          |       |
| 24    |                                                                                   |     |                                     |                          |                           |                      |                 |       |          |       |

# D2. TEACHING PLAN - 2

### Module – 3

| Title:   | FLEXIBLE PAVEMENT FAILURES                                                         | Appr  | 12 Hrs |
|----------|------------------------------------------------------------------------------------|-------|--------|
|          |                                                                                    | Time: |        |
| a        | Course Outcomes                                                                    | СО    | Blooms |
| -        | At the end of the topic the student should be able to                              | -     | Level  |
| 1        | Evaluate the causes for failure of flexible pavements using different methods      | CO3   | L5     |
|          |                                                                                    |       |        |
| b        | Course Schedule                                                                    |       |        |
| Class No | Portion covered per hour                                                           | -     | -      |
| 17       | Flexible Pavement Failures, Maintenance and Evaluation, Types of failures, Causes, | CO3   | L4     |
| 18       | Remedial/Maintenance measures in flexible pavements,                               | CO3   | L2     |
| 19       | Functional Evaluation by Visual inspection and unevenness measurements, Structural | CO3   | L4     |
| 20       | evaluation by Benkleman beam deflection method                                     | CO3   | L4     |
| 21       | Falling weight deflectometer, GPR method.                                          | CO3   | L3     |
| 22       | Design factors for runway pavements                                                | CO3   | L3     |
| 23       | Design methods for Airfield pavement                                               | CO3   | L5     |
| 24       | Design methods for Airfield pavement and problems on above                         | CO3   | L5     |

| С | Application Areas                         |   | - |
|---|-------------------------------------------|---|---|
| 1 | In the maintenance of flexible pavements  |   | - |
| 2 | In the construction of airfield pavements |   |   |
|   |                                           |   |   |
|   |                                           |   |   |
| d | Review Questions                          |   | - |
|   |                                           |   |   |
| е | Experiences                               | - | - |

### Module – 4

| Title:   | Stresses in rigid pavements                                                                                            | Appr  | 13 Hrs |
|----------|------------------------------------------------------------------------------------------------------------------------|-------|--------|
|          |                                                                                                                        | Time: |        |
| a        | Course Outcomes                                                                                                        | СО    | Blooms |
| -        | At the end of the topic the student should be able to                                                                  | -     | Level  |
| 1        | Design the rigid pavements based on soil condition using different method                                              | CO4   | L4     |
|          |                                                                                                                        |       |        |
| b        | Course Schedule                                                                                                        |       |        |
| Class No | Portion covered per hour                                                                                               | -     | -      |
| 25       | Stresses in Rigid Pavement : Types of stress, Analysis of Stresses                                                     | CO4   | L2     |
| 26       | Westergaard's Analysis, Modified Westergaard equations, Critical stresses                                              | CO4   | L4     |
| 27       | Wheel load stresses, Warping stress, Frictional stress, combined stresses (using chart / equations), problems on above | CO4   | L4     |
| 28       | Design of Rigid Pavement                                                                                               | CO4   | L4     |
| 29       | Design of CC pavement by IRC: 58-2002 for dual and Tandem axle load                                                    | CO4   | L4     |
| 30       | Reinforcement of slabs                                                                                                 | CO4   | L4     |
| 31       | Design of Tie bars, Design factors for Runway pavements,                                                               | CO4   | L4     |
| 32       | Design methods for airfield pavements, problems of the above                                                           | CO4   | L4     |
|          |                                                                                                                        |       |        |
| С        | Application Areas                                                                                                      | -     | -      |
| 1        | In the construction of rigid pavements                                                                                 | -     | -      |
| 2        | In the construction of Runway pavements                                                                                |       |        |
|          |                                                                                                                        |       |        |
| d        | Review Questions                                                                                                       | -     | -      |
|          |                                                                                                                        |       |        |
| е        | Experiences                                                                                                            | -     | -      |
| 1        |                                                                                                                        |       |        |
| 2        |                                                                                                                        |       |        |

# E2. CIA EXAM – 2

### a. Model Question Paper - 2

| 15CV833         | Sem: | 8th | Marks<br>: | 30 | Time: | 75 minutes |
|-----------------|------|-----|------------|----|-------|------------|
| Pavement design |      |     |            |    |       |            |

| Q.   | Note: Answer all questions, each carry equal marks. Module : 3, 4                                                                                                                                                                                               | Mark | CO     | Level |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------|
| Nos  |                                                                                                                                                                                                                                                                 | S    |        |       |
|      |                                                                                                                                                                                                                                                                 |      |        |       |
|      | MODULE-3(15 marks)                                                                                                                                                                                                                                              |      |        |       |
| 1) a | Calculate ESWL of a dual wheel assembly carrying 2044 kg each for trial<br>pavement thickness values Of 150, 200, & 250mm center to center spacing<br>between the two tyres =270mm and clear gap between<br>The walls of the tyres=110mm. (By graphical method) | 7    | CO3    | L4    |
| b    | Bring out the differences between Dual wheel load assembly and Dual tandem wheel load assembly                                                                                                                                                                  | 8    | CO3    | L4    |
| 2) 2 |                                                                                                                                                                                                                                                                 | 1 /  | $CO_2$ |       |
| 2/ a | A circular load of radius 12cm with uniform contact pressure of 9 kg/cm <sup>2</sup> is<br>applied on the surface of a homogeneous elastic mass.Determine the<br>vertical stress under the centre of the load at a depth<br>of 40cm from the surface.           | 10   | 003    | L0    |
|      | MODULE-4(15 marks)                                                                                                                                                                                                                                              |      |        |       |
| 3) a | Explain the fundamentals in design of pavements                                                                                                                                                                                                                 | 8    | CO4    | L4    |
| b    | Explain in brief two layer elastic theory by Burmister                                                                                                                                                                                                          | 7    | CO4    | L4    |
| 4) a | Calculate the deflection at the surface of a pavement due to a wheel load of 40KN and a tyre pressure of 0.5MN/m <sup>2</sup> .The value of E of the subgrade and                                                                                               | 10   | CO4    | L5    |
|      | pavement may be assumed to be uniformly equal to 20 MN/ $m^2$ .                                                                                                                                                                                                 |      |        |       |
| b    | What are types of pavement? And explain with neat sketches                                                                                                                                                                                                      | 5    | CO4    | L5    |

#### b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

|       | Model Assignment Questions |         |                                                                                 |                                                        |                                                                         |                                                                                                 |             |     |       |  |  |  |
|-------|----------------------------|---------|---------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------|-----|-------|--|--|--|
| Crs C | ode:                       | 15CV833 | 3 Sem:                                                                          | 8th                                                    | Marks:                                                                  | Time:                                                                                           | Minutes:    |     |       |  |  |  |
| Cours | se:                        | Paveme  | nt design                                                                       |                                                        |                                                                         |                                                                                                 |             |     |       |  |  |  |
| Note: | Each                       | student | to answer 2-3                                                                   | assignm                                                | ents. Each assi                                                         | gnment carries equal ma                                                                         | rk.         |     | 1     |  |  |  |
| SNo   | l                          | JSN     |                                                                                 | As                                                     | signment Desc                                                           | ription                                                                                         | Marks       | CO  | Level |  |  |  |
| 1     |                            |         | Explain the bearing test                                                        | procedu                                                | re to find cor                                                          | rected 'k' value in plat                                                                        | e           | CO3 | L3    |  |  |  |
| 2     |                            |         | Explain conta                                                                   | act press                                              | ure                                                                     |                                                                                                 |             | CO3 | L2    |  |  |  |
| 3     |                            |         | What are<br>components                                                          | the fui<br>in a flexi                                  | nctions and<br>ble pavement.                                            | importance of variou                                                                            | S           | CO3 | L2    |  |  |  |
| 4     |                            |         | Calculate ES<br>each for trial<br>center to cer<br>clear gap be<br>The walls of | WL of a<br>pavementer<br>spacentween<br>tweenthe tyres | dual wheel as<br>nt thickness valu<br>ing between th<br>=110mm. (By gra | sembly carrying 2044 k<br>ues Of 150, 200, & 250mr<br>ne two tyres =270mm an<br>aphical method) | g<br>n<br>d | CO3 | L5    |  |  |  |
| 5     |                            |         | Bring out the<br>and Dual tan                                                   | e differen<br>dem whe                                  | ices between D<br>eel load assemb                                       | ual wheel load assembl                                                                          | У           | CO3 | L3    |  |  |  |
| 6     |                            |         | A Plate bear<br>the following<br>value for star<br>MEAN SETLI                   | ing test v<br>g reading<br>ndard pla<br>EMENT V        | was conducted<br>gs were observ<br>ite of 75 cm size<br>'ALUES in mm    | on a 30cm dia plate an<br>ed. Find the corrected                                                | d<br>k      | CO3 | L5    |  |  |  |
|       |                            |         |                                                                                 |                                                        | 0                                                                       |                                                                                                 |             |     |       |  |  |  |
|       |                            |         |                                                                                 |                                                        | 0.26                                                                    |                                                                                                 |             |     |       |  |  |  |
|       |                            |         |                                                                                 |                                                        | 0.51                                                                    |                                                                                                 |             |     |       |  |  |  |
|       |                            |         |                                                                                 |                                                        | 0.75                                                                    |                                                                                                 |             |     |       |  |  |  |
|       |                            |         |                                                                                 |                                                        | 1.01                                                                    |                                                                                                 |             |     |       |  |  |  |
|       |                            |         |                                                                                 |                                                        | 1.26                                                                    |                                                                                                 |             |     |       |  |  |  |
|       |                            |         |                                                                                 |                                                        | 1.54                                                                    |                                                                                                 |             |     |       |  |  |  |
|       |                            |         |                                                                                 |                                                        | 1.74                                                                    |                                                                                                 |             |     |       |  |  |  |
| 7     |                            |         | A circular loa                                                                  | nd of radi                                             | us 12cm with ur                                                         | niform contact pressure o                                                                       | of          | CO3 | L5    |  |  |  |

|    | 9 kg/cm <sup>2</sup> is applied on the surface of a homogeneous elastic<br>mass.Determine the vertical stress under the centre of the<br>load at a depth<br>of 40cm from the surface.                                                                                                                                                                                                                        |     |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 8  | Determine the total thickness of flexible pavement assuming<br>single layer elastic theory and using the following data Design<br>wheel load=4200kg<br>Tyre pressure= 6kg/cm<br>Elastic modulus=150kg/cm <sup>2</sup><br>Permissible deflection=0.25cm                                                                                                                                                       | CO3 | L5 |
| 9  | Using the chart find the deflection and vertical stress at the<br>top of the subgrade assuming homogeneous elastic layer for<br>the following load<br>I. Design load of 5000 kg, radius of loaded area 15 cm and<br>pavement thickness 30 cm<br>II.Design load of 15000 kg, contact pressure of 12 kg/cm <sup>2</sup> and<br>pavement thickness 90 cm. assume E of the soil mass as 80<br>kg/cm <sup>2</sup> | CO3 | L5 |
| 10 | Explain the fundamentals in design of pavements                                                                                                                                                                                                                                                                                                                                                              | CO3 | L2 |
| 11 | Explain in brief two layer elastic theory by Burmister                                                                                                                                                                                                                                                                                                                                                       | CO3 | L3 |
| 12 | What are types of pavement? And explain with neat sketches                                                                                                                                                                                                                                                                                                                                                   | CO3 | L2 |
| 13 | Calculate the deflection at the surface of a pavement due to a<br>wheel load of 40KN and a tyre pressure of 0.5MN/m <sup>2</sup> .The<br>value of E of the subgrade and pavement may be assumed to<br>be uniformly equal to 20 MN/m <sup>2</sup> .                                                                                                                                                           | CO3 | L5 |

# D3. TEACHING PLAN - 3

# Module – 5

| Title:   | RIGID PAVEMENT FAILURES                                                     | Appr  | 10 Hrs |
|----------|-----------------------------------------------------------------------------|-------|--------|
|          |                                                                             | Time: |        |
| a        | Course Outcomes                                                             | CO    | Blooms |
|          |                                                                             |       | Level  |
| 1        | Evaluate the causes for failure of rigid pavements using different methods  | CO5   | L5     |
|          |                                                                             |       |        |
| b        | Course Schedule                                                             | -     | -      |
| Class No | Portion covered per hour                                                    | -     | -      |
| 33       | Rigid Pavement Failures, Maintenance and Evaluation                         | CO5   | L2     |
| 34       | Types of failures, causes, remedial/maintenance measures in rigid pavements | CO5   | L2     |
| 35       | Functional evaluation by Visual inspection and unevenness measurements      | CO5   | L4     |
| 36       | wheel load and its repetition, properties of subgrade                       | CO5   | L4     |
| 37       | properties of concrete.External conditions, joints                          | CO5   | L2     |
| 38       | Reinforcement, Requirements of joints, Types of joints, Expansion joint,    | CO5   | L2     |
|          | contraction joint                                                           |       |        |
| 39       | warping joint, construction joint longitudinal joint                        | CO5   | L4     |
| 40       | Design of joints                                                            | CO5   | L5     |
|          |                                                                             |       |        |
|          | Application Areas                                                           | -     | -      |
| 1        | In the field of analysis of rigid pavement                                  | -     | -      |
|          |                                                                             |       |        |

| d | Review Questions | - | - |
|---|------------------|---|---|
| е | Experiences      | - | - |

# E3. CIA EXAM – 3

# a. Model Question Paper - 3

|                  |                                                                                                                                         | CV833                         | PC                      |                         |                         |                           |                     | Sem:              |                   | Marks<br>:        | 30        | Т         | ime: | 75 m | inutes |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------|---------------------------|---------------------|-------------------|-------------------|-------------------|-----------|-----------|------|------|--------|
|                  |                                                                                                                                         | PAVEM                         | IENT D                  | ESIGN                   |                         |                           |                     |                   |                   |                   |           |           |      |      |        |
|                  | Q.<br>Nos                                                                                                                               | Note: A                       | Answer                  | all questic             | ons, each c             | arry equal                | marks. I            | Modu              | le : 5            |                   |           | Marl<br>s | k (  | 0    | Level  |
|                  |                                                                                                                                         |                               |                         |                         | MODUL                   | E-5(15 mar                | ks)                 |                   |                   |                   |           |           |      |      |        |
|                  | 1) a                                                                                                                                    | Write a                       | i note o                | n khansas               | method of               | flexible pav              | /ement              | desigi            | n                 |                   |           | 6         | C    | :05  | L5     |
|                  | k                                                                                                                                       | Plate k<br>readinç<br>cm size | bearing<br>gs were<br>e | test was c<br>observed. | conducted<br>Find the c | on an 30ci<br>corrected k | m dia p<br>value fo | late a<br>or star | nd the<br>ndard p | follow<br>late of | ing<br>75 | 9         | C    | :05  | L5     |
| SETLEN<br>VALUES | 1EN <sup>-</sup><br>in                                                                                                                  | nm                            | 0                       | 0.26                    | 0.51                    | 0.75                      | 1.01                | 1.                | .26               | 1.54              |           |           |      |      |        |
| LOAD \           |                                                                                                                                         | IES in                        | 0                       | 465                     | 910                     | 1200                      | 1350                | 1                 | 500               | 1600              | þ         |           |      |      |        |
|                  |                                                                                                                                         |                               |                         |                         |                         |                           |                     |                   |                   |                   |           |           |      |      |        |
|                  |                                                                                                                                         |                               |                         |                         |                         | OR                        |                     |                   |                   |                   |           |           |      |      |        |
|                  | 2) a                                                                                                                                    | IExplair<br>overco            | n the va<br>me          | arious reaso            | ons for fros            | t action in               | rigid pa            | iveme             | nts anc           | l how i           | t is      | 6         | C    | :05  | L2     |
|                  | k                                                                                                                                       | Explair                       | n the Mo                | c Leod met              | hod of pav              | ement des                 | ign                 |                   |                   |                   |           | 9         | C    | :05  | L2     |
|                  |                                                                                                                                         |                               |                         |                         | MODUL                   | E-5(15 mar                | ks)                 |                   |                   |                   |           |           | C    | 05   |        |
|                  | 3) aExplain with a neat sketch the mechanism of mud pumping in CC pavement constructed on clayey strata. Indicate the remedial measures |                               |                         |                         |                         |                           |                     |                   | 5                 | C                 | :05       | L2        |      |      |        |
|                  | k                                                                                                                                       | Bring c                       | out the g               | guidelines              | for flexible            | pavement                  | design a            | as per            | IRC 37-           | 2001              |           | 10        | С    | 05   | L2     |
|                  |                                                                                                                                         |                               |                         |                         |                         |                           |                     |                   |                   |                   |           |           | С    | :05  |        |
|                  | 4) a                                                                                                                                    | Explair                       | n the we                | estergards              | wheel load              | stress equ                | ations.             |                   |                   |                   |           | 6         | С    | 05   | L2     |
|                  | k                                                                                                                                       | Explair                       | n the fu                | nction of th            | e compone               | ents of CC                | paveme              | nts               |                   |                   |           | 8         | C    | :05  | L2     |
|                  |                                                                                                                                         |                               |                         |                         |                         |                           |                     |                   |                   |                   |           |           |      |      |        |

### b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

|                  | Model Assignment Questions     |                                                            |                                                                  |              |               |               |               |          |        |    |  |
|------------------|--------------------------------|------------------------------------------------------------|------------------------------------------------------------------|--------------|---------------|---------------|---------------|----------|--------|----|--|
| Crs Code:        |                                | 15CV833                                                    | Sem:                                                             | 8th          | Marks:        | 5 / 10        | Time:         | 90 – 120 | minute | S  |  |
| Cours            | se:                            | PAVEME                                                     | NT DESIGN                                                        |              |               |               |               |          |        |    |  |
| Note:            | Each                           | student t                                                  | o answer 2-3                                                     | assignment   | s. Each assig | gnment carı   | ries equal ma | ark.     |        |    |  |
| SNo              | SNo USN Assignment Description |                                                            |                                                                  |              | Marks         | СО            | Level         |          |        |    |  |
| 1                |                                | Write a note on khansas method of flexible pavement design |                                                                  |              |               |               |               | CO5      | L2     |    |  |
| 2                |                                |                                                            | Explain the types of joints with their functions                 |              |               |               |               |          | CO5    | L4 |  |
| 3                |                                |                                                            | Explain how the wheel load and its repetition of loads effects   |              |               |               |               | ts       | CO5    | L4 |  |
|                  |                                | 1                                                          | the CC paven                                                     | nents        |               |               |               |          |        |    |  |
| 4                |                                |                                                            | Explain the daily variation in temperature and warping stress in |              |               |               |               |          | CO5    | L4 |  |
|                  |                                |                                                            | CC pavement                                                      | IS.          |               |               |               |          |        |    |  |
| 5 Explain the va |                                |                                                            |                                                                  | arious reaso | ns for frost  | action in rig | jid pavemen   | ts       | CO5    | L4 |  |

|    | and how it is overcome                                                                                                              |     |    |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 6  | Explain the Mc Leod method of pavement design                                                                                       | CO5 | L4 |
| 7  | Write the requirements of the joints                                                                                                | CO5 | L2 |
| 8  | Explain with a neat sketch the mechanism of mud pumping in CC pavement constructed on clayey strata. Indicate the remedial measures | CO5 | L4 |
| 9  | Bring out the guidelines for flexible pavement design as per<br>IRC 37-2001                                                         | CO5 | L5 |
| 10 | Explain the factors affecting the design and performance of CC pavements                                                            | CO5 | L4 |
| 11 | Explain the westergaards wheel load stress equations.                                                                               | CO5 | L4 |
| 12 | Explain the function of the components of CC pavements                                                                              | CO5 | L4 |

## F. EXAM PREPARATION

# 1. University Model Question Paper

| Course: |       | Pavement design Month                                                                                        | / Year | May /    | 2020   |
|---------|-------|--------------------------------------------------------------------------------------------------------------|--------|----------|--------|
| Crs     | Code: | 15CV833 Sem: 8 Marks: 80 Time:                                                                               |        | 180 m    | inutes |
| -       | Note  | Answer all FIVE full questions. All questions carry equal marks.                                             | Marks  | CO       | Level  |
| 1       | a     | With a neat sketch explain the properties and function of                                                    | 6      | CO1      | L2     |
|         |       | a) sub base course b) wearing course                                                                         |        | 001      |        |
|         | a     | A plate load test conducted with 0.3m dia plate on subgrade and on a                                         | 10     | CO1      | L5     |
|         |       | 0.40N/mm²respectively at 5mm deflection                                                                      |        |          |        |
|         |       | Design the pavement section for 50KN wheel load and contact pressure                                         |        |          |        |
|         |       | of 0.70N/mm² for an allowable deflection of 8mm using Burmister two                                          |        |          |        |
|         |       | layer theory.                                                                                                |        |          |        |
|         |       | OR                                                                                                           |        |          |        |
| -       | a     | Write a brief note on rigid pavement                                                                         | 4      | CO2      | L2     |
|         | b     | Write the difference between flexible pavement and rigid pavement                                            | 6      | CO2      | L2     |
|         | С     | With a neat sketch describe the significance of design wheel load and contact pressure in design of pavement | 6      |          |        |
| 2       | a     | A circular load of radius 12cm with uniform contact pressure of 9 kg/cm                                      | 2 8    | CO3      | L3     |
|         |       | is applied on the surface of a homogeneous elastic mass. Determine the                                       | è      |          |        |
|         |       | vertical stress under the centre of the load at a depth                                                      |        |          |        |
|         | h     | or 40cm from the surface.                                                                                    | r O    | <u> </u> |        |
|         |       | elastic theory and using the following data Design wheel load=4200kg                                         |        | 03       | L5     |
|         |       | Tyre pressure= 6kg/cm                                                                                        |        |          |        |
|         |       | Elastic modulus=150kg/cm <sup>2</sup>                                                                        |        |          |        |
|         |       | Permissible deflection=0.25cm                                                                                |        |          |        |
|         |       | OR                                                                                                           |        |          |        |
| -       | a     | Write the difference between flexible pavement and airfield pavement                                         | 6      | CO4      | L2     |
|         | b     | Define ESWL                                                                                                  | 2      | CO4      | L2     |
|         | С     | With a neat sketch explain the properties and function of                                                    | 8      | CO4      | L4     |
|         | 2     | a) sub base course b) wearing course                                                                         |        | COF      |        |
| 3       | a     | Lead of rolling and a time pressure of a pavement due to a whee                                              |        | 005      | L5     |
|         |       | subgrade and pavement may be assumed to be uniformly equal to 20                                             | 2      |          |        |
|         |       | $MN/m^2$                                                                                                     |        |          |        |
|         | b     | What are types of pavement and explain with neat sketches                                                    | 8      | CO5      | 14     |
|         |       | OR                                                                                                           |        |          |        |
| -       | a     | Explain the fundamentals in design of pavements                                                              | 5      | CO6      | L2     |
|         | b     | Explain in brief two layer elastic theory by Burmister                                                       | 4      | CO6      | L4     |
|         | С     | What are the functions and importance of various components in a                                             | a 7    | CO6      | L3     |

| 4 | а | Calculate ESWL of a dual wheel assembly carrying 2044 kg each for trial<br>pavement thickness values Of 150, 200, & 250mm center to center<br>spacing between the two tyres =270mm and clear gap between<br>The walls of the tyres=110mm. (By graphical method)                                                                                                                                        | 12 | CO5 | L5 |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
|   | b | Bring out the differences between Dual wheel load assembly and Dual tandem wheel load assembly                                                                                                                                                                                                                                                                                                         | 4  | CO4 | L2 |
|   |   | OR                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |    |
|   | а | Using the chart find the deflection and vertical stress at the top of the<br>subgrade assuming homogeneous elastic layer for the following load<br>I. Design load of 5000 kg, radius of loaded area 15 cm and pavement<br>thickness 30 cm<br>II.Design load of 15000 kg, contact pressure of 12 kg/cm <sup>2</sup> and pavement<br>thickness 90 cm. assume E of the soil mass as 80 kg/cm <sup>2</sup> | 10 | CO5 | L5 |
|   | b | Write a note on khansas method of flexible pavement design                                                                                                                                                                                                                                                                                                                                             | 6  | CO5 | L3 |
| 5 | а | Bring out the guidelines for flexible pavement design as per IRC 37-2001                                                                                                                                                                                                                                                                                                                               | 6  | CO4 | L4 |
|   | b | Explain the various reasons for frost action in rigid pavements and how it is overcome                                                                                                                                                                                                                                                                                                                 | 5  | CO5 | L3 |
|   | С | Explain the Mc Leod method of pavement design                                                                                                                                                                                                                                                                                                                                                          | 5  | CO4 | L3 |
|   |   | OR                                                                                                                                                                                                                                                                                                                                                                                                     |    |     |    |
|   | а | Explain the types of joints with their functions                                                                                                                                                                                                                                                                                                                                                       | 8  | CO5 | L2 |
|   | b | Explain how the wheel load and its repetition of loads effects the CC pavements                                                                                                                                                                                                                                                                                                                        | 8  | CO5 | L3 |

# 2. SEE Important Questions

| Cou | irse: | Pavement design Mon                                                      | h / Year | May / | 2020   |
|-----|-------|--------------------------------------------------------------------------|----------|-------|--------|
| Crs | Code: | 15cv833 Sem: 8 Marks: 100 Time                                           | e:       | 180 m | inutes |
|     | Note  | Answer all FIVE full questions. All questions carry equal marks.         | -        | -     |        |
| Mc  | Qno.  | Important Question                                                       | Marks    | CO    | Year   |
| du  |       |                                                                          |          |       |        |
| e   |       |                                                                          |          |       |        |
| 1   | 1     | With a neat sketch explain the properties and function of                | 5        | CO1   | L2     |
|     |       | a) sub base course b) wearing course                                     | 10       |       |        |
|     | 2     | A plate toad test conducted with 0.3m dia plate on subgrade and on a     | 10       | C02   | L5     |
|     |       | $\rho_{\rm AON}/mm^2$ respectively at 5mm deflection                     |          |       |        |
|     |       | Design the pavement section for 50KN wheel load and contact pressure     | è        |       |        |
|     |       | of 0.70N/mm² for an allowable deflection of 8mm using Burmister two      |          |       |        |
|     |       | layer theory.                                                            |          |       |        |
| 2   | 3     | List and explain the design strategies of variables of pavement          | 5        | CO3   | L2     |
|     | 4     | Determine the total thickness of flexible pavement assuming single laye  | er 5     | CO4   | L5     |
|     |       | elastic theory :                                                         |          |       |        |
|     |       | Design wheel load= 3700kg                                                |          |       |        |
|     |       | Tyre pressure= 5.0kg/cm <sup>2</sup>                                     |          |       |        |
|     |       | Permissible deflection= $0.25$ cm                                        |          |       |        |
|     | 5     | Write a brief note on assumptions and limitation of bousssinesg's theory | / 5      | CO3   | 12     |
| 3   | 6     | Calculate ESWL of a dual wheel assembly carrying 2044 kg each for tr     | ial7     | CO5   |        |
|     |       | pavement thickness values Of 150, 200, & 250mm center to cen             | er       |       |        |
|     |       | spacing between the two tyres =270mm and clear gap between               |          |       |        |
|     |       | The walls of the tyres=110mm. (By graphical method)                      |          |       |        |
|     | 7     | Bring out the differences between Dual wheel load assembly and Du        | ial 8    | CO5   | L3     |
|     | -     | Landern wheel load assembly                                              | 2 45     | CO5   |        |
|     | ð     | A circular load of radius 12cm with uniform contact pressure of 9 kg/ci  | n- 15    | 05    | L5     |
|     |       | is applied on the surface of a nonogeneous etastic mass. Determine t     | ne       |       |        |
|     |       | of 40cm from the surface.                                                |          |       |        |

| 4 | 9  | Explain the fundamentals in design of pavements                            | 5 | CO4 | L2 |
|---|----|----------------------------------------------------------------------------|---|-----|----|
|   | 10 | Explain in brief two layer elastic theory by Burmister                     | 5 | CO4 | L3 |
|   | 11 | What are types of pavement? And explain with neat sketches                 | 5 | CO4 | L2 |
| 5 | 12 | Write a note on khansas method of flexible pavement design                 | 6 | CO4 | L3 |
|   | 13 | Bring out the guidelines for flexible pavement design as per IRC 37-2001   | 6 | CO5 | L4 |
|   | 14 | Explain the various reasons for frost action in rigid pavements and how it | 5 | CO5 | L3 |
|   |    | is overcome                                                                |   |     |    |
|   | 15 | Explain the westergards wheel load stress equations.                       | 6 | CO4 | L4 |
|   | 16 | Explain the function of the components of CC pavements                     | 8 | CO3 | L4 |

# Course Outcome Computation

Academic Year: 2019-20 Even semester

| INTERNAL<br>TEST         | T1    |       |       | T2    |       | Т3    |       |       |  |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Course                   | CO1   | co    | CO3   | CO4   | CO5   | CO6   | CO7   | CO8   |  |
| QUESTION NO              | Q1 LV | Q2 LV | Q3 LV | Q1 LV | Q2 LV | Q3 LV | Q1 LV | Q2 LV |  |
| MAX MARKS                |       |       |       |       |       |       |       |       |  |
| Average CO<br>Attainment |       |       |       |       |       |       |       |       |  |

# PO Computation

| Program<br>Outcome<br>Weight of<br>CO - PO | PO1 | PO1 PO3 |    | PO3 |    | PO1 |    | PO12 |    | PO12 |    | PO6 |    | PO1 |    |     |  |
|--------------------------------------------|-----|---------|----|-----|----|-----|----|------|----|------|----|-----|----|-----|----|-----|--|
| Course<br>Outcome                          | CO1 | CO1     |    | CO2 |    | CO3 |    | CO4  |    | CO5  |    | CO6 |    | CO7 |    | CO8 |  |
| Test/Quiz/Lab                              |     | Tt      |    | L   |    |     |    |      | T2 |      |    |     | Т  |     | 3  |     |  |
| QUESTION NO                                | Q1  | LV      | Q2 | LV  | Q3 | LV  | Q1 | LV   | Q2 | LV   | Q3 | LV  | Q1 | LV  | Q2 | LV  |  |
| MAX MARKS                                  |     |         |    |     |    |     |    |      |    |      |    |     |    |     |    |     |  |
| Average CO<br>Attainment                   |     |         |    |     |    |     |    |      |    |      |    |     |    |     |    |     |  |